Design, Synthesis, and SAR of Tachykinin Antagonists: Modulation of Balance in NK₁/NK₂ Receptor Antagonist Activity

Jeffrey S. Albert,* David Aharony, Donald Andisik, Herbert Barthlow, Peter R. Bernstein, Russell A. Bialecki, Robert Dedinas, Bruce T. Dembofsky, Daniel Hill, Karin Kirkland, Gerard M. Koether, Benedict J. Kosmider, Cyrus Ohnmacht, William Palmer, William Potts, William Rumsey, Lihong Shen, Ashok Shenvi, Scott Sherwood, Paul J. Warwick, and Keith Russell

CNS Discovery Research, AstraZeneca Pharmaceuticals LP, 1800 Concord Pike, P.O. Box 15437, Wilmington, Delaware 19850-5437

Received February 28, 2002

Through optimization of compounds based on the dual NK_1/NK_2 antagonist ZD6021, it was found that alteration of two key regions could modulate the balance of NK_1 and NK_2 potency. Substitution of the 2-naphthalene position in analogues of ZD6021 resulted in increased NK_1 potency and thus afforded NK_1 preferential antagonists. Alterations of the piperidine region could then increase NK_2 potency to restore dual NK_1/NK_2 selectivity. Through these efforts, three novel receptor antagonists from a single chemically related series were identified; two are dual NK_1/NK_2 antagonists, and the third is an NK_1 preferential antagonist. In this paper, the factors affecting the balance of NK_1 and NK_2 selectivity in this series are discussed and the in vitro and in vivo properties of the novel antagonists are described.

Introduction

In mammals, the tachykinins are a family of three neuropeptides: substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). The preferred receptors for these are termed (respectively) NK_1 , NK_2 , and NK_3 . NK_1 and NK_2 are widely distributed in the central nervous system (CNS) and peripheral tissue, and NK_3 appears to be more localized in the CNS.¹ Functioning as neuro-transmitters or neuromodulatory agents, SP, NKA, and NKB may be involved in several pathophysiological conditions including asthma, arthritis, cough, emesis, anxiety, depression, pain, urinary incontinence, and inflammatory bowel disease.^{2,3} The areas of neurokinin antagonist development have been extensively reviewed.⁴⁻⁷

In an earlier paper, we described the discovery of the potent, orally active NK₂ antagonist ZD7944 (1).⁸ Evidence has suggested that both NK₁ and NK₂ are involved in pulmonary pathophysiology and other disorders.^{9,10} Therefore, agents that simultaneously antagonize NK₁ and NK₂ may have therapeutic applications.

To explore these possibilities, we sought to introduce NK₁ activity while maintaining NK₂ activity in structures related to **1**. Approaches to the development of dual NK₁/NK₂ antagonists have been demonstrated by starting from other NK₂ selective agents^{11–15} and by starting from NK₁ selective agents.⁵

Our subsequent efforts^{16,17} led to the discovery of the NK₁/NK₂ dual antagonist ZD6021 (**2**). Ongoing work has focused on improving the properties of related compounds as antagonists and on better understanding the subtle factors relevant to neurokinin selectivity. By starting from compounds related to **2** and altering the piperidine and naphthamide regions (Figure 1), it has been possible to modulate the degree of NK₁ and NK₂

Figure 1. Structure of 2 indicating the "piperidine" and "naphthamide" regions.

activity. Described here are structure–activity relationship (SAR) studies leading to the identification of the dual NK_1/NK_2 antagonist ZD2249 (3), the NK_1 preferential antagonist ZD4974 (4), and the dual NK_1/NK_2 antagonist 5 (Chart 1).

Chemistry

Synthesis of 3. The synthesis of compound **3** is described in Scheme 1. 3-Methoxyphenol was reacted with bromine to give **6**. Bromophenol **6** was converted to thioether **9** utilizing the Newman–Kwart rearrangement.¹⁸ Following lithiation with *n*-butyllithium, **9** underwent cerium-mediated reaction with N-Cbz-piperidone and was dehydroxylated using triethylsilane with trifluoroacetic acid. The resulting aryl methyl thioether (**11**) was stereoselectively oxidized using a method similar to that described by Kagan.¹⁹ Deprotection of the Cbz group was then carried out using KOH to afford **13**. This material was then reductively alkylated with aldehyde **14**¹⁶ in the presence of sodium cyanoborohydride to give **3**.

Synthesis of 4. The key naphthamide moiety in **4** was prepared according to Scheme 2. 3-Hydroxy-2-naphthoic acid (**15**) was iodinated using NaI with sodium hypochlorite/NaOH and then bis-methylated using dimethyl sulfate to give **17**. The methyl ester was

^{*} To whom correspondence should be addressed. Tel: 302-886-4771. Fax: 302-886-5382. E-mail: jeffrey.albert@astrazeneca.com.

Chart 1

Scheme 1^a

^{*a*} Reagents: (i) Bromine, benzoyl peroxide, 1,1,1-trichloroethanol, 77%. (ii) 1,4-Diazabicyclo[2.2.2]octane, DMF, 60%. (iii) *N*,*N*-Diethylaniline, 230 °C, 59%. (iv) KOH, methanol. (v) MeI, K₂CO₃, 99% (overall iv and v). (vi) *n*-BuLi, CeCl₃, of N-Cbz-4-piperidone, 79%. (vii) Et₃SiH, TFA, 89%. (viii) Diethyl-D-tartrate, tBuOOH, Ti(OiPr)₄, 69%. (ix) KOH, methanol, 47%. (x) NaBH₃CN, AcOH, methanol, 70%.

Scheme 2^a

^{*a*} Reagents: (i) NaOH, NaI, sodium hypochlorite, 75%. (ii) K_2CO_3 , dimethyl sulfate, 64%. (iii) Dimethyl aluminum amide, 73%. (iv) Pd(OAc)₂, Et₃N, carbon monoxide (1 atm), methanol, 59%. (v) LiOH, water, THF, 89%. (vi) Oxalyl chloride, catalytic DMF.

converted directly to the nitrile (18) using Wienreb conditions.²⁰ The resulting material was carbonylated using carbon monoxide in the presence of Pd(OAc)₂ and methanol to give 19, the methyl ester was saponified using LiOH to give 20, and then, the carboxylic acid was converted to the acid chloride using oxalyl chloride to afford 21. Compound 4 was prepared by reaction of acid chloride 21 with 22¹⁶ using Schotten–Baumann conditions according to Scheme 3. Similarly, amine 22 could be reacted with a variety of other naphthoyl chlorides to prepare naphthamide analogues related to 2.

Scheme 3

Synthesis of 5. The 4,4-disubstituted piperidine 23 was prepared according to Scheme 4. 1-Benzyl-4-piperidone was reacted with ammonium carbonate and sodium cyanide to give spirohydantoin 24. This material was hydrolyzed (LiOH) to amino acid 25 and converted to ethyl ester 26 using thionyl chloride in ethanol. The amine was acylated with 5-chlorovaleryl chloride to give **27** and then cyclized by slow addition to a suspension containing NaH to give lactam 28. A change in amine protecting groups was carried out by palladium hydroxide-catalyzed hydrogenolysis of the benzylamine (to 29) and reaction with N-(benzyloxycarbonyloxy)succinimide to afford **30**. The ethyl ester (**30**) was saponified to **31**, reacted with methylamine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in the presence of 4-(dimethylamino)pyridine to give 32, and then deprotected by catalytic hydrogenolysis to afford 23.

^a Reagents: (i) (NH₄)₂CO₃, NaCN, 89%. (ii) LiOH, reflux, 40 h, 66%. (iii) Thionyl chloride, ethanol, 84%. (iv) 5-Chlorovaleryl chloride, 57%. (v) NaH, 87%. (vi) Pd(OH)₂ (20%), H₂ (1 atm), 99%. (vii) *N*-(Benzyloxycarbonyloxy)succinimide, 86%. (viii) NaOH, THF, water, reflux, 10 h, 88%. (ix) Methylamine hydrochloride, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, DMAP, 80%. (x) Pd(OH)₂ (20%), H₂ (1 atm), 99%.

Scheme 5^a

 a Reagents: (i) NaOH, water, DCM (biphasic). (ii) Oxalyl chloride, DMSO, triethylamine, 91%. (iii) HOAc, NaBH_3CN, methanol, 88%.

As shown in Scheme 5, amino alcohol **33**²¹ was acylated with **21** using Schotten–Baumann conditions. The resulting alcohol **34** was oxidized to aldehyde **35** using Swern²² conditions and, finally, reductively aminated with the substituted piperidine **23** to afford **5**.

Results

(a) Substituted Aryl Sulfoxide Piperidine Analogues of 2; Identification of Dual NK₁/NK₂ Antagonist 3. We have previously described the identification of 2 as a dual NK₁/NK₂ antagonist.^{16,17} With this as a starting point, we sought to further improve the activity and balance of NK₁/NK₂ potency through alterations in the piperidine region. A series of analogues were prepared, which contained the 2-methylsulfinylphenyl group and additional substitution in the aryl ring (Table 1).

In previous work, we investigated the preferences for the sulfoxide stereochemistry on NK₁ and NK₂ affinity. Briefly, in comparison to **2**, the (*R*)-sulfoxide diastereomer had moderately weaker NK₁ affinity ($pK_B = 8.36 \pm 0.21$) and essentially equivalent NK₂ affinity ($pK_B = 1000$) ($pK_B = 10000$) ($pK_$

Table 1. Receptor Affinity (pK_B) for Substituted Aryl Sulfoxide Piperidine Analogues of $\mathbf{2}^a$

	R	config^b	$\mathbf{NK_1}^c$	NK_2^d
2		S	$\textbf{8.98} \pm \textbf{0.17}$	$\textbf{8.26} \pm \textbf{0.10}$
3	4-MeO	S	$\textbf{8.20} \pm \textbf{0.08}$	$\textbf{8.70} \pm \textbf{0.08}$
36a		R, S	8.43 ± 0.23	$\textbf{8.48} \pm \textbf{0.04}$
36b	4-F	S	$\textbf{8.01} \pm \textbf{0.04}$	8.38 ± 0.01
36c	4-Br	S	$\textbf{8.00} \pm \textbf{0.10}$	8.12 ± 0.10
36d	4-HO	R, S	$\textbf{8.93} \pm \textbf{0.24}$	$\textbf{8.34} \pm \textbf{0.18}$
36e	4-HO ₂ C	R, S	7.87 ± 0.12	6.38 ± 0.22
36f	4-MeO ₂ C	R, S	7.92 ± 0.06	6.84 ± 0.28
36g	$4-H_2NC(O)$	R, S	8.53 ± 0.06	6.92 ± 0.07
36h	4-MeS(O)	R, S	7.33 ± 0.11	$\textbf{8.27} \pm \textbf{0.18}$
36i	5-F	R, S	8.26 ± 0.10	8.34 ± 0.32
36j	5-Br	R, S	8.46 ± 0.11	8.55 ± 0.14
36k	6-F	R, S	7.25 ± 0.34	$\textbf{6.83} \pm \textbf{0.03}$

^{*a*} pK_B determinations using rabbit pulmonary artery tissue (n = 2-6). ^{*b*} Sulfoxide stereochemical configuration. ^{*c*} Agonist, ASM-SP. ^{*d*} Agonist, BANK.

 8.39 ± 0.06).¹⁶ Therefore, aryl-substituted analogues were prepared as the (*S*)-sulfoxide diastereomer where practical; however, in some cases, (*R*,*S*)-sulfoxide mixtures were studied.

In general, NK₁ affinity remained similar or decreased slightly for most analogues containing additional aryl substituents (Table 1). Only the 4-methylsulfonyl (**36h**) and the 6-fluoro analogues (**36k**) showed substantially weaker affinity. NK₂ affinity was also quite tolerant to additional substitution in the aryl ring; however, the 4-carbonyl-containing analogues (**36e**-g) and the 6-fluoro analogue (**36k**) showed significantly weaker affinity.

Compounds showing strong affinity at both NK₁ and NK₂ (generally $pK_B > 8$) underwent in vivo testing in the guinea pig pulmonary mechanics model²³ (PMM). The PMM assay measures the ability of an antagonist to block the increase in airway resistance, which otherwise occurs in response to administration of the NK₁ selective agonist ASMSP (Ac-(Arg⁶Sar⁹Met(O₂)¹¹) SP₆₋₁₁) or the NK₂ selective agonist BANK (β -ala⁸NKA₄₋₁₀). Antagonist potency can be expressed as the dose ratio (dr), which is the ratio of the agonist ED₅₀ value (for airway response) in the presence of antagonist.

For example, a compound with a dr of 50 would indicate that after it was dosed with a particular antagonist, 50 times more agonist (ASMSP for NK₁ or BANK for NK₂) would be required to induce an airway restriction response as compared to the agonist dose needed to generate the same response for a control animal where no antagonist is given. In Table 2, results are shown for compounds with significant activity in this assay.

Compounds were administered intravenously (generally with antagonist at 10 μ mol/kg, 10 min prior to agonist challenge) or orally (generally with antagonist **Table 2.** Comparison of the In Vivo Potency (dr) of **2** and Substituted Aryl Sulfoxide Piperidine Analogues in the Guinea Pig PMM^a

	R	NK ₁ iv ^c	NK ₁ po ^d	NK ₂ iv ^c	NK ₂ po ^d
2	Н	156	33	61	21
3	MeO	64	8	337	60
36b	F	126	4	153	5
36c	Br	11	nd ^e	30	nd ^e
4	na ^b	1365	610	14	2
5	na^b	384	50	155	49

^{*a*} Values given are dr (ED₅₀ in the presence of antagonist divided by the ED₅₀ in the absence of antagonist) based on $n \ge 3$ determinations; NK₁ agonist = ASMSP; NK₂ agonist = BANK. ^{*b*} na = not applicable; see structures in schemes. ^{*c*} Antagonist dosing, 10 μ mol/kg 10 min prior to agonist challenge. ^{*d*} Antagonist dosing, 30 μ mol/kg 120 min prior to agonist challenge. ^{*e*} nd = not determined.

at 30 μ mol/kg, 2 h prior to agonist challenge). For a given compound, comparison between the intravenous and the oral potency can provide an indication of the relative bioavailability in guinea pig (ED₅₀ iv/ED₅₀ po). For example, antagonist potency of **2** decreased by (respectively) about 5- and 3-fold for NK₁ and NK₂ when administered orally in comparison to when administered intravenously.

As indicated in Table 2, the relative reduction in iv versus po activity for fluorine analogue 36b was substantial (about 30-fold) at both NK₁ and NK₂; for the bromine analogue (**36c**), iv activity was much weaker. This was indicative of poor bioavailability, and these compounds were therefore dismissed from further consideration. For 3, the relative activity differences (iv/po) were similar to those observed for **2**, suggesting that the distributional properties and in vivo potencies may also be similar. However, **3** has greater potency at NK_2 than NK_1 whereas **2** has greater NK_1 potency. As potential therapeutic agents, it is not known what the optimal balance of activity (NK1 vs NK2) would be for various disease states; therefore, it will be desirable to be able to compare antagonists with different relative potencies at each receptor.

Because of its good receptor affinity and in vivo activity, **3** was advanced for more detailed analysis. The binding affinity of **3** to human NK₁ and NK₂ receptors was high and similar to **2** (Table 3). As another assessment of NK₁ antagonist potency, an in vivo model was used to monitor the ability of the test compound to inhibit ASMSP-induced extravasation of plasma proteins in guinea pig lung.²⁴ The NK₁ potency of **3** (ED₅₀ = 1 μ mol/kg) was similar to **2** (Table 4). In comparison, the NK₂ potency for **3** (ED₅₀ = 3 μ mol/kg) was improved by about 4-fold relative to **2** in the PMM model. Therefore, the NK₁ and NK₂ activities are approximately balanced for **3** whereas **2** has greater potency at NK₁ than NK₂.

Table 3. Antagonist Binding to Human Tachykinin Receptors;^{*a*} K_i (nM)

antagonist	NK ₁ ^b	$\mathrm{NK}_2{}^c$	$\mathrm{NK}_3{}^d$	
1	1620 ± 670	0.92 ± 0.67	9190 ± 3960	
2	0.12 ± 0.01	0.64 ± 0.08	74 ± 13	
3	0.14 ± 0.06	0.34 ± 0.17	39 ± 12	
4	0.17 ± 0.09	67 ± 27	220 ± 53	
5	$\textbf{0.27} \pm \textbf{0.14}$	35 ± 13	9.4 ± 5.5	

 a Human tachykinin receptor expressed in mouse erythroleukemia cells; $n \geq 2$ determinations. b Against $^3\text{H-SP}$. c Against $^3\text{H-NKA}$. d Against $^{125}\text{I-MPNI}$.

Table 4. Guinea Pig In Vivo Activity in Pulmonary Models; ED_{50} (µmolg/kg)^{*a*}

antagonist	$\mathrm{NK}_1{}^b$	$\mathrm{NK}_2{}^c$
2	0.6	13
3	1	3
4	0.07	nd ^d
5	0.5	9.3

^{*a*} Determined 2 h after oral dosing of antagonist; reported as single E_{50} values, calculated from the dose response obtained from three to six animals at each dose for 4–5 dosing levels over the course of several days; on a given day, the full dose response is not possible; therefore, the doses are staggered for randomness. ^{*b*} Lung plasma extravasation assay; agonist, ASMSP. ^{*c*} Pulmonary mechanics assay; agonist, BANK. ^{*d*} nd = not determined.

(b) Increasing NK₁ Selectivity. Substituted Cyanonaphthamide Analogues of 2; Identification of 4. As previously described,¹⁶ antagonist 2 bound with high affinity to NK₁ and NK₂ in rabbit pulmonary artery tissue and showed potent in vivo activity in guinea pig following oral dosing. However, bioavailablity in rat and dog was relatively low (9 and 18%, respectively). Following administration to rat, the major metabolic transformations identified were oxidation of the sulfoxide to the sulfone and hydroxylation and glucuronidation of the naphthamide ring. As a strategy toward improving bioavailability, we sought to identify metabolically labile sites.

By further substituting the cyanonaphthamide ring, we attempted to alter the observed in vitro metabolic path. Substitution at the naphthalene 6-position by methoxy, cyano, or hydroxy groups (37a-c) reduced antagonist affinity at NK1 (Table 5). Similarly, substitution at the 4-position with bromo, cyano, or fluoro groups (37d-f) also reduced NK₁ affinity. The 4-methylsubstituted adduct (37g) showed only slightly decreased NK_1 activity in comparison to **2**. However, NK_1 affinity was increased for the 2-methoxy-substituted analogue (4, $pK_B = 9.5$). NK₂ affinity was reduced for all additionally substituted analogues. Therefore, in comparison to **2**, addition of the 2-methoxy substitution to the naphthyl group (affording 4) had the effect of increasing NK₁ affinity while reducing NK₂ affinity and thereby shifting the profile of the resulting compound from a dual NK_1 NK₂ antagonist to an NK₁ preferential antagonist.

As indicated in Table 3, **4** inhibited binding of [³H]-SP to human NK₁ receptors with greater potency ($K_i = 0.17$ nM) than the binding of [³H]NKA to NK₂ receptors ($K_i = 67$ nM). Inhibition of binding of ¹²⁵I-MPNKB to NK₃ receptors was substantially weaker ($K_i = 220$ nM).

Oral administration of **4** to guinea pigs dose-dependently attenuated NK₁-induced extravasation of plasma proteins (ED₅₀ = 0.07 μ mol/kg, 2 h postdose) with approximately 14 times greater potency than **3** (ED₅₀ = 1.0 μ mol/kg, Table 4). In the guinea pig PMM assay,

Table 5. Receptor Affinity (pK_B) for Substituted Cyanonaphthamide Analogues of 2^a

	R	NK ₁ ^b	$\mathbf{NK_2}^c$
2	none	8.98 ± 0.17	8.26 ± 0.10
4	2-OMe	9.50 ± 0.11	7.50 ± 0.03
37a	6-OMe	7.00 ± 0.11	7.97 ± 0.05
37b	6-CN	7.77 ± 0.15	6.42 ± 0.44
37c	6-OH	8.02 ± 0.11	7.31 ± 0.01
37d	4-Br	7.78 ± 0.04	6.99 ± 0.05
37e	4-CN	7.76 ± 0.31	7.65 ± 0.07
37f	4-F	6.75 ± 0.14	6.20 ± 0.33
37g	4-Me	8.53 ± 0.12	7.80 ± 0.01

 a Tissue, rabbit pulmonary artery; $n\,{=}\,2{-}6.~^b$ Agonist, ASMSP. c Agonist, BANK.

Figure 2. Bonds with restricted rotation (arrows) in the 2-substituted, 3-cyanonaphthamide series.

inhibition of airway restriction in response to the NK₂ agonist (BANK) showed 30-fold weaker potency (dr = 2) in comparison to **3** (dr = 60) when dosed orally at 30 μ mol/kg, 2 h prior to agonist challenge (Table 2). The bioavailability in dog was nearly three times greater for **4** (51%) than for **3** (18%). However, differences were smaller for bioavailability in rat (12% for **4** and 7% for **3**).

Compounds that contain a 2-substituted cyanonaphthamide group (such as **4**) typically exist as an equilibrating mixture of four conformational isomers. This results from the restricted rotation about the amide and the carbonyl-aryl bonds (Figure 2). The kinetics and thermodynamics of atropisomer interconversion for related systems have been extensively studied.^{25,26} NMR spectra for compound **4** show sets of resonances for each of the component atropisomers. For most compounds of this type, each of the four atropisomers can be resolved by analytical high-performance liquid chromatography (HPLC) at low temperatures. The atropisomeric properties and significance will be further discussed separately.²⁷

(c) Effect of 2-Methoxynaphthalene Substituent on the Balance of NK₁/NK₂ Affinity. As described above, 2 showed approximately balanced affinity at NK₁ and NK₂; however, addition of a 2-methoxyl substituent to the naphthyl region (affording 4) increases NK₁ affinity while decreasing NK₂ affinity. This effect can be seen in Table 6 by comparing receptor affinities for analogues containing $R^2 = H$ with $R^2 = OMe$. For compounds where $R^2 = OMe$, NK₁ affinity (pK_B) was increased by about 0.5–1 log units (Table 6, entries 1 and 5) while NK₂ affinity was decreased by about 0.5-1 log units (e.g., Table 6, entries 1-4 and 6). While most compounds appeared to behave as purely competitive antagonists, this was not the case for some compounds containing the naphthalene methoxyl group (**38b**-**d**,**f**). These compounds continued to behave as high affinity antagonists, but they induced a suppression in the maximal response to added agonist.²⁸ Such behavior is often associated with noncompetitive or partially competitive antagonism.

For this series, it has been demonstrated that varying the naphthamide region influences the balance of NK_1/NK_2 affinity; the balance of affinity can be altered over a wide range to afford compounds that are essentially NK_2 selective (1), that have mixed NK_1/NK_2 selectivity (2 and 3), and that are NK_1 preferential (4).

(d) Restoration of Dual NK₁/NK₂ Potency to Analogues of 4 Through Alteration of the Piperidine Region; Identification of NK₁/NK₂ Antagonist 5. As noted above, the 2-methoxynaphthalene substituent appeared to improve the dog bioavailability characteristics for 4 in comparison to 2 while simultaneously altering the balance of affinity to favor NK₁ over NK₂. Thus, returning to our interests in identifying dual NK₁/ NK₂ antagonists, we tried to determine if the balance of NK₁/NK₂ activity could be restored by altering the piperidine component to increase NK₂ affinity while maintaining the potent NK₁ affinity and improved bioavailability characteristics associated with the 3-cyano-2-methoxynaphthalene unit.

We noted above that for compounds containing an aryl-substituted piperidine, addition of the naphthyl 2-methoxyl group tended to increase NK₁ affinity and reduce NK₂ affinity (Table 6, entries 1–6). However, NK₂ affinity was not reduced for the nonaryl-substituted piperidines in entry 7 (Table 6). In previous efforts, we had seen that related 4,4-disubstituted piperidine analogues of **2** were NK₂ preferential (unpublished results). Starting from such compounds, we sought to find if NK₁ affinity could be increased by addition of the naphthalene 2-methoxyl group.

As was observed for entry 7 (Table 6), changing from $R^2 = H$ to $R^2 = OMe$ increased NK₁ potency for the remaining nonaryl piperidines in entries 8–11. However, unlike the aryl piperidines, changing from $R^2 = H$ to $R^2 = OMe$ in the nonaryl piperidines did not necessarily reduce NK₂ potency.

In this series, the compound that retained the highest dual NK₁/NK₂ potency in rabbit pulmonary artery tissue was 5 (Table 6, entry 9). Activity in the PMM assay was also strong and evenly balanced (Table 2). However, binding affinity was not as balanced when determined for the human receptors expressed in MEL cells (Table 3); NK₁ affinity ($K_i = 0.27$ nM) was about 130-fold stronger than for NK₂ affinity ($K_i = 35$ nM). Oral administration of 5 to guinea pigs dose-dependently attenuated NK1-induced extravasation of plasma proteins (ED₅₀ = 0.5μ mol/kg, 2 h postdose). In the guinea pig PMM assay, inhibition of airway restriction in response to the NK₂ agonist (BANK) showed 19-fold weaker potency (9.3 μ mol/kg) when dosed orally at 30 μ mol/kg, 2 h prior to agonist challenge (Table 4). The bioavailability of 5 in dog (15%) was essentially equivalent to the bioavailability of **2** and **3**.

Table 6. Comparison of Antagonist Affinity (pKB) for 3-Cyano-2-naphthamides and 3-Cyano-2-methoxynaphthamides^a

			$R^2 = H$			$R^2 = 0$	$R^2 = OMe$	
Entry	\mathbf{R}^1		NK ₁	NK_2		\mathbf{NK}_1	NK ₂	
1		2	8.98±0.17	8.26±0.10	4	9.50±0.11 ^b	7.50±0.03	
2		3	8.20±0.08	8.70±0.08	38b	nc ^c	7.61±0.10	
3	Br Chile	36c	8.00±0.10	8.12±0.10	38c	nc ^c	7.5±0.04	
4	HOUT	36d	8.93±0.24	8.34±0.18	38d	nc ^c	7.46±.26	
5		36f	7.92±0.06	6.84±0.28	38e	8.85±0.02	<7	
6	H,N L L L	36g	8.53±0.06	6.92±0.07	38f	nc ^c	6.20±0.07	
7		39a	8.18±0.07	7.86±0.12	40a	8.45±0.17	7.92±0.07	
8		39b	7.60±0.23	8.22±0.31	40b	8.14±0.24	8.11±0.05	
9		39c	7.33±0.07	8.44±0.06	5	8.70±0.11	8.20±0.10	
10		39d	7.51±0.01	7.81±0.05	40d	8.55±0.28	7.79±0.05	
11		39e	7.36±0.04	8.52±0.38	40e	7.88±0.11	7.70±0.07	

^{*a*} Tissue, rabbit pulmonary artery; n = 2-6. NK₁ = ASMSP, and NK₂ agonist = BANK. ^{*b*} Compound causes suppression of the maximum response to increasing concentration of agonist (ASMSP); therefore, by definition, it does not behave as a purely competitive antagonist. However, for purposes of comparison, the affinity (p K_B) could be determined at low antagonist concentration (1 nM) where suppression of response was minimal. ^{*c*} nc: Not a purely competitive antagonist; therefore, p K_B value could not be determined.²⁸

Several compounds in this series exhibit significant NK₃ affinity (Table 3); this is particularly evident for **5** ($K_i = 9.4$ nM). For this compound, affinity at NK₃ is greater than at NK₂ ($K_i = 35$ nM). Other groups have also demonstrated structurally related compounds that have high NK₃ affinity. For example, SR142801 is a potent and selective NK₃ antagonist²⁹ (0.21 nM), which shares a similar structural core to that in the presently described series. Analysis of NK₃ SARs will require further investigation.

Discussion

The identification of the dual NK₁/NK₂ antagonist **2** has been previously described.¹⁶ Although this compound had relatively high affinity and potent in vivo activity, it had low bioavailability in rat and dog (9 and 18%, respectively). To better understand the factors involved in NK₁/NK₂ activity and to develop further improved antagonists, we made a series of modifications to the piperidine and naphthamide regions of structures related to **2**.

Piperidine Aryl Ring Substitutions; Identification of Dual Antagonist 3. For most compounds, additional substitution of the piperidine aryl ring resulted in slightly to substantially reduced affinity $(pK_B; rabbit pulmonary artery tissue)$ at both NK₁ and NK₂ (Table 1). However, the methoxyl-substituted compound **3** was an exception, which maintained good (albeit weaker) NK₁ activity and improved NK₂ activity. This compound and others that maintained good, dual NK_1/NK_2 activity were advanced for in vivo testing in guinea pig (Table 2). Among these analogues, 3 showed the greatest activity following oral dosing. When dosed orally as an NK₁ antagonist, 3 (dr = 8) was weaker than **2** (dr = 33). As an NK₂ antagonist, **3** (dr = 60) was about 3-fold more potent than 2 (dr = 21). Similar to 2, high binding affinity was observed for **3** with cloned human NK1 and NK2 receptors; NK3 affinity was substantially weaker (Table 3). As shown in Table 4, NK_1 in vivo potency was similar for **3** and **2** (ED₅₀ = 1 and 0.6 μ mol/ kg, respectively), while NK_2 in vivo potency was about 4-fold greater for **3** than **2** (ED₅₀ = 3 and 13 μ mol/kg, respectively). However, despite this improvement in NK₂ potency, bioavailability of **3** (8% in rat, 18% in dog) was essentially identical to 2.

Naphthyl Ring Substitutions; Identification of NK₁ Preferential Antagonist 4. In vitro metabolism studies of 2 indicated that a significant degradation pathway was oxidation/glucuronidation of the naphthamide ring. Analogues containing additional substitution of the cyanonaphthamide group were prepared to try to modulate metabolism in this region. In comparison to 2, most additionally substituted analogues showed similar or reduced affinity at NK₁ and NK₂; however, addition of a 2-methoxy group (4) resulted in a substantial increase in NK1 affinity and a substantial decrease in NK₂ affinity (Table 5). Thus, the effect of adding the naphthyl 2-methoxyl substitution was to alter the balance of NK₁/NK₂ affinity from approximately equivalent (2 and 3) to NK_1 preferential (4). Compound 4 showed high affinity and selectivity for the cloned human NK₁ receptor (Table 3) and had very potent activity following oral dosing in guinea pig ($ED_{50} = 0.07$ μ mol/kg, Table 4). Furthermore, addition of the methoxyl group resulted in increased bioavailability in dog (51%) as compared to **2** and **3**. Further studies will be needed to determine if the improved bioavailability of **4** resulted directly from blocking naphthalene hydroxylation.

Piperidine Substitutions; Restoration of Dual Activity and of Identification of Antagonist 5. When introduced into aryl-substituted piperidine analogues of 4, the effect of the naphthyl 2-methoxyl group was seen to be general (Table 6, entries 1-6); that is, NK₁ affinity was increased and NK₂ affinity was decreased. However, for several naphthyl 2-methoxyl analogues (38b-d, f), NK₁ binding was not purely competitive; such compounds were potent antagonists, but pK_B values could not be determined.²⁸ We had observed that certain nonaryl-substituted piperidines in the 3-cyanonaphthalene series tended to increase NK₂ affinity and decrease NK₁ affinity (unpublished results). With the assumption that the addition of the naphthyl 2-methoxyl group might enhance NK₁ affinity for other analogues (as for **4** vs **2**), we prepared a series of compounds that contained such nonaryl-substituted piperidines (Table 6, entries 7-11). Indeed, addition of the naphthyl 2-methoxyl group tended to increase NK₁ affinity while reducing NK₂ affinity to a smaller extent. The greatest difference was seen between compounds 39c (an NK₂ preferential antagonist) and 5 (a dual NK₁/ NK₂ antagonist; addition of the naphthyl 2-methoxyl group increased NK₁ affinity by 1.4 log units and essentially had no effect on NK₂ affinity (Table 6, entry 9). For compound **5**, binding to human cloned receptors (Table 3) was more NK₁ preferential than observed for the other dual antagonists 2 and 3. However, compound 5 showed excellent, balanced, dual activity in oral dosing in the guinea pig PMM assay (Table 2), which was greater than that observed for **2** or **3**.

In summary, by trying to improve upon the potency of **2**, we found that subtle alterations in the piperidine and naphthamide regions could lead to substantial changes in affinity for NK₁ and NK₂. By adding a 4-methoxyl group to the aryl piperidine, the resulting compound (3) maintained good potency at NK₁ while increasing potency at NK₂. We demonstrated that addition of a naphthyl 2-methoxyl group increased NK1 activity for a range of piperidine analogues. Therefore, starting from the dual NK_1/NK_2 antagonist 2 and adding a 2-methoxy substituent in the naphthamide region, the resulting compound, **4** (an NK₁ preferential antagonist), had increased NK1 affinity and decreased NK₂ affinity. Furthermore, by starting from NK₁ preferential compounds based on 4, NK₂ activity could be restored by complementary modifications in the piperidine region. By combining an NK₂-preferring piperidine with the NK₁-preferring naphthamide, the dual $NK_1/$ NK₂ antagonist **5** was identified.

Experimental Section

Biological Studies. The cloning, heterologous expression, and scale-up growth of MEL cells transfected with either the NK₁, NK₂, or NK₃ receptor were conducted as previously described for the human NK₂ receptor.^{30–33} The human NK₁ receptor was identical to that reported previously^{34,35} whereas the human NK₃ receptor differed from the genomic sequence at AA439 (Cys vs Phe).^{36,37} Ligand binding assays with ASMSP, BANK, and ¹²⁵I-MPNI and cloned NK₁, NK₂, and NK₃

receptors were conducted as published.³⁸ Isolated tissue response (p K_B), pulmonary mechanics, and plasma extravasation studies were carried out as previously described.¹⁷ Compound potency in the guinea pig in vivo models (Table 4) was determined 2 h after oral dosing of antagonist and reported as a single ED₅₀ value; this was calculated from the dose response obtained from three to six animals at each dose for 4–5 dosing levels over the course of several days; on a given day, the full dose response is not possible; therefore, the doses were staggered for randomness. Full details for the extravasation and mechanics models have been previously described.¹⁷

For pK_B determinations, different antagonist concentrations were used according to the affinity of the compound under study; concentrations ranged from 10 nM (for the highest affinity antagonists) to 10 mM (for lower affinity antagonists).

Bioavailability Analysis. Compounds were administered to rat (n = 3) or dog (n = 1) at 1–10 μ mol/kg by iv bolus injection or at 10–100 μ mol/kg orally as a solution in 75% poly-(ethylene glycol) 400 in normal saline. Blood samples were taken via surgically implanted cannula or by venipuncture over a 24 h period, and plasma was analyzed for unchanged compound by liquid chromatography (LC)/mass spectrometry (MS).

Chemistry. ¹H NMR spectra were obtained at 300 MHz using a Bruker DPX 300 spectrometer and were referenced to tetramethylsilane (TMS). Mass spectral data were obtained on a Micromass QTOF mass spectrometer. Silica gel chromatography was performed with ICN silica 32–63, 60 Å. Thinlayer chromatography was done on silica gel 60 F-254 (0.25 mm thickness) plates, and visualization was accomplished with UV light. Elemental analyses (C, H, N) were performed on an Exeter Analytical CE-440 elemental analyzer, and all compounds are within 0.4% of theory. All materials were obtained commercially and used without further purification. For compounds containing derivatives of 2-substituted-1-naphthoic acids, ¹H NMR spectra and HPLC chromatograms are complex because these compounds exist as a mixture of slowly interconverting conformational isomers (atropisomers). In these cases, ¹H NMR integrations are not given.

2-Bromo-5-methoxyphenol (6). To a solution of 3-methoxyphenol (129.03 g) and benzoyl peroxide (1.00 g) in 500 mL of 1,1,1-trichloroethane (TCE) was slowly added a solution of bromine (167.90 g in 150 mL in TCE) over 1 h. During the addition, the reaction flask was irradiated with a GE sunlamp (275 W, 120 V), which caused a gentle reflux to occur. The HBr released was trapped in a beaker containing a solution of 126.02 g of NaHCO3 and 800 mL of water. When the addition of bromine was complete, the reaction mixture was purged with nitrogen for 20 min. The reaction mixture was extracted with saturated NaHCO3 until the pH of the aqueous extract was neutral. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give a reddish oil. The crude product was purified by vacuum distillation (150 °C, 150 mTorr) to give 161.78 g (77%) of a viscous liquid. ¹H NMR (CDCl₃): δ 3.77 (s, 3 H), 5.57 (s, 1 H), 6.42 (m, 1 H), 6.60 (d, 1 H, J = 3.0), 7.30 (d, 1 H, J =9.0)

2-Bromo-5-methoxy-(*N***,***N***-dimethylthiocarbamoyloxy)phenol (7).** To a stirred solution **5** (161.78 g) and 1,4diazabicyclo[2.2.2]octane (180.03 g) in dimethylformamide (DMF) (1 L) was slowly added dimethylthiocarbamoyl chloride (200 g) in four separate portions over 30 min. When the addition was complete, the mixture was stirred overnight (18 h) under a nitrogen atmosphere. At the end of this period, the mixture was poured into distilled water (4 L) with rapid stirring. The precipitated product was collected by filtration and washed with water. The crude product was air-dried for 4 h and crystallized from methanol to give white crystals (139.19 g, 60%). ¹H NMR (CDCl₃): δ 3.38 (s, 3 H), 3.47 (s, 3 H), 3.79 (s, 3 H), 6.71 (m, 2 H), 7.45 (m, 1 H). MS *m*/*z* 290 (M⁺).

4-Bromo-3-(*N*,*N***-dimethylcarbamoylthio)methoxybenzene (8).** A solution of **7** (139.19 g) and *N*,*N*-diethylaniline (350 mL) was vacuum-degassed (4 cycles, flask was backfilled with nitrogen) and then heated under reflux under nitrogen for 3.5 h. The resulting brown solution was concentrated (short path distillation) to approximately 100 mL, and the residue was poured into 500 mL of ice cold 6 N HCl with rapid stirring. The mixture was cooled to room temperature, 100 mL of diethyl ether was added, and a heavy precipitate was formed, which was collected by filtration. This tan precipitate (crude product) was briefly air-dried. The filtrate was extracted with diethyl ether. Diethyl ether extracts were combined, dried over MgSO₄, filtered, and concentrated under reduced pressure to give a brownish solid (additional crude product). The crude product was purified by crystallization from methanol to give off-white crystals (82.04 g, 59%). ¹H NMR (CDCl₃): δ 3.05 (br s, 3 H), 3.12 (br s, 3 H), 3.79 (s, 3 H), 6.82 (dd, 1 H, J = 8.7, 3.0), 7.19 (d, 1 H, J = 3.0), 7.55 (d, 1 H, J = 8.7). MS m/z 290 (M⁺).

4-Bromo-3-(methylthio)methoxybenzene (9). To a stirred solution of KOH (120.01 g) in 500 mL of methanol was added 82.04 g of 8. The mixture was heated under reflux under a nitrogen atmosphere for 2 h, then cooled to 0 °C, and neutralized with 400 mL of 6 N HCl. The mixture was cooled to 0 °C and extracted with dichloromethane (DCM). The organic extracts were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give a light brown liquid. This liquid was dissolved in 600 mL of anhydrous DMF and treated with 80.90 g of anhydrous K₂CO₃. The resulting mixture was stirred for 20 min, and then, 68.40 g of methyl iodide was slowly added over 15 min. The resulting mixture was stirred at room temperature under a nitrogen atmosphere overnight (18 h). At the end of this period, the reaction mixture was poured into 2.8 L of distilled water and extracted with diethyl ether. The organic layers were combined, dried over MgSO₄, filtered, and concentrated under reduced pressure to give a pale yellow liquid (65.03 g, 99%). ¹H NMR (CDCl₃): δ 2.45 (s, 3 H), 3.80 (s, 3 H), 6.55 (dd, 1 H, J = 8.7, 3.0), 6.66 (d, 1 H, J = 3.0), 7.39 (d, 1 H, J = 8.7).

4-Hydroxy-4-(4-methoxy-2-methylthiophenyl)-N-Cbzpiperidine (10). Cerium(III) chloride heptahydrate (181.38 g) was heated under high vacuum at 100 °C for 2 days and then at 140 °C for 2 days. This material was transferred to a dry flask equipped with a mechanical stirrer, suspended in 700 mL of anhydrous tetrahydrofuran (THF), and stirred while cooling to -78 °C. A solution of 9 in 500 mL of anhydrous THF was cooled to -78 °C and treated dropwise with *n*-butyllithium (111.5 mL of a 2.5 M solution in hexane) over 1 h. The temperature of the reaction flask was kept below -70 °C during the addition. This mixture was stirred at -78 °C for 1.5 h and transferred via wide bore insulated cannula into the flask containing the stirred suspension of $CeCl_3$ at -78 °C. The resulting peach-colored suspension was stirred for 1.5 h at -78 °C, and then, a solution of 1-benzyloxycarbonyl-4piperidone (65.10 g in 200 mL of anhydrous THF) was added via cannula over 30 min. When the addition was complete, the reaction mixture was warmed to room temperature and stirred overnight (18 h). At the end of this period, the reaction mixture was quenched with 500 mL of saturated NH₄Cl and stirred for 30 min. The organic layer was decanted, concentrated under reduced pressure, and set aside. The remaining gravish suspension was stirred with 1 L of DCM and filtered through Celite. The Celite filter cake was washed with DCM. All organic extracts were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give a viscous oil, which was purified by chromatography on silica (1:1, ethyl acetate:hexane) to give 85.00 g (79%) of an oil. ¹H NMR (CDCl₃): δ 1.99 (m, 2 H), 2.12 (m, 2 H), 2.52 (s, 3 H), 3.39 (m, 2 H), 3.81 (s, 3 H), 4.10 (m, 3 H), 5.15 (s, 2 H), 6.71 (dd, 1 H, J = 8.7, 2.7), 6.95 (d, 1 H, J = 2.7), 7.24 (d, 1 H, J = 8.7), 7.37 (m, 5 H). MS m/e 387 (M⁺).

4-(4-Methoxy-2-methylthiophenyl)-N-Cbz-piperidine (**11).** To an ice-cooled, rapidly stirred slurry of **10** (50.09 g) in triethylsilane (29.12 g) was slowly added trifluoroacetic acid (29.60 g). When the addition was complete, the mixture was warmed to room temperature and stirred overnight (18 h). At the end of this period, the mixture was poured into 300 mL of saturated NaHCO₃ and extracted with DCM. Extracts were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give an oil. The product was purified by chromatography on silica (40:1 to 20:1 gradient, DCM:ethyl acetate) to give 42.50 g (89%) of an oil. ¹H NMR (CDCl₃): δ 1.57 (m, 2 H), 1.83 (d, 2 H, J = 12.3), 2.46 (s, 3 H), 2.91 (m, 2 H), 3.06 (tt, 1 H, J = 12.0, 3.3), 3.80 (s, 3 H), 4.33 (m, 2 H), 5.14 (s, 2 H), 6.68 (dd, 1 H, J = 8.7, 2.4), 6.76 (d, 1 H, J = 2.4), 7.04 (d, 1 H, J = 8.7), 7.36 (m, 5 H). MS *m*/*z* 394 (M + Na).

4-(4-Methoxy-2-(S)-methylsulfinylphenyl)-N-Cbz-piperidine (12). To a 500 mL flask was added 11.56 g of diethyl-D-tartrate, 140 mL of anhydrous DCM, 7.96 g of titanium(IV) isoproproxide, and 0.50 g of water. The pale yellow solution was stirred for 30 min and then treated with 10.78 g of 11 dissolved in 40 mL of DCM. The reaction mixture was then immersed in a water/glycol bath prechilled to -30 °C. After it was stirred for 30 min (bath temperature -36 °C), 5.6 mL of a 6 M solution of tert-butylhydroperoxide in nonane was slowly added to the reaction mixture and stirred for 6 days under nitrogen atmosphere (bath temperature -38 °C). At the end of this period, the reaction was quenched with 50 mL of water and stirred vigorously for 1 h while warming to room temperature. The mixture was then treated with 100 mL of 2.5 M NaOH, stirred for an additional 20 min, and filtered through Celite, and the layers were separated. The filter cake was washed with DCM twice, and each portion was used to extract the aqueous layer. The organic extracts were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. This gave a light yellow oil (7.76 g, 69%), which was purified by chromatography on silica (4:1, ethyl acetate:DCM). ¹H NMR (CDCl₃): δ 1.62 (m, 2 H), 1.79 (m, 2 H), 2.70 (s, 3 H), 2.86 (m, 3 H), 3.87 (s, 3 H), 4.34 (m, 2 H), 5.16 (s, 2 H), 7.00 (dd, 1 H, J = 8.4, 2.7), 7.18 (d, 1 H, J = 8.4), 7.36 (m, 5 H), 7.52 (d, 1 H, J = 2.7). MS m/z 410 (m + Na).

4-(4-Methoxy-2-(S)-methylsulfinylphenyl)piperidine (13). To a solution of KOH (1.50 g) in 20 mL of 1:1 ethanol: water was added 1.23 g of 12. The resulting mixture was heated under reflux under nitrogen atmosphere for 18 h, evaporated, dissolved in 10 mL of water, and extracted with CHCl₃. The organic extracts were combined, dried over Na₂-SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by chromatography on silica (19: 1, DCM:methanol with 0.5% aqueous NH₄OH) to give 0.38 g (47%) of white solid. Chiral purity was >99% as determined by chiral HPLC using a Chiral-CBH 150 \times 4 mm column (cellobiohydrolase immobilized onto 5 μ m silica, Bodman) eluted with 2-propanol at a flow rate of 1.2 mL/min with UV detection at 220 nm. Under these conditions, the desired isomer (S) elutes with a retention time of 13.3 min and the alternate isomer (R) elutes with a retention time of 5.4 min. ¹H NMR (CDCl₃): δ 1.69 (m, 2 H), 1.82 (m, 2 H), 2.38 (m, 1 H), 2.70 (s, 3 H), 2.75 (m, 2 H), 3.22 (m, 2 H), 3.88 (s, 3 H), 7.01 (dd, 1 H, J = 8.7, 2.7), 7.28 (d, 1 H, J = 8.7), 7.51 (d, 1 H, J = 2.7). MS m/z 254 (M⁺).

N-((S)-2-(3,4-Dichlorophenyl)-4-(4-(4-methoxy-(S)-2-methylsulfinylphenyl)-1-piperidinyl)butyl)-N-methyl-3-cyano-1-naphthamide Fumarate (3). A solution of 13 (0.61 g) in methanol (30 mL) was treated with 14¹⁶ (1.02 g), and the reaction mixture was acidified to pH 4.0 using acetic acid. Following addition of $NaBH_3CN$ (0.23 g), the reaction mixture was stirred for 18 h. The reaction mixture was then diluted with DCM and washed with 20% potassium carbonate solution. The aqueous layer was extracted with additional DCM, and the combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford a foam, which was purified by chromatography. Elution with 9:1 DCM:methanol afforded the product as a foam (1.48 g, 93%). To a flask was added 0.87 g of 3 and 5 mL of absolute ethanol. In a separate flask, 0.15 g of fumaric acid was dissolved in 5 mL of absolute ethanol. Both flasks were heated to reflux with a heat gun, and the fumaric acid solution was added to the solution of 3. The mixture was allowed to cool and was stirred overnight (18 h) under a N2 atmosphere and filtered. The solid was washed with cold absolute ethanol and then dried under vacuum for 18 h at 50 °C to give a white solid (0.79 g, 78%). ¹H NMR (DMSO- d_6): δ 8.63 (m, 1 H), 8.10 (m, 1 H), 7.90–6.83 (m, 10 H), 6.59 (s, 2 H), 3.81 (s, 3 H), 3.70–2.85 (m, 6 H), 2.82–2.39 (m, 6 H), 2.38–1.42 (m, 11 H). MS m/z 662 (M⁺); mp 239–243 °C. Anal. calcd for C₃₆H₃₆N₃O₃SCl₂, 1 fumaric acid, 0.5 water: C, 61.07; H, 5.25; N, 5.34. Found: C, 60.86; H, 5.27; N, 5.05.

3-Hydroxy-4-iodo-2-naphthoic Acid (16). A mixture of NaOH (2.12 g) in methanol (100 mL) was stirred until the solution was homogeneous. Sodium iodide (3.98 g) and 15 (5.00 g) were added and allowed to stir for 30 min. The resulting suspension was cooled to 0 °C, and a 5.25% (w/v) aqueous solution of sodium hypochlorite was added dropwise, and stirring was continued for 1 h. Saturated sodium thiosulfate (25 mL) was added, and after 5 min, the solution was acidified to pH 2 by addition of 6 N HCl resulting in the formation of a yellow precipitate, which was filtered and washed with water (50 mL). The precipitate was transferred to a round-bottomed flask, dissolved in methanol (70 mL) and toluene (100 mL), concentrated, redissolved in methanol (70 mL), concentrated, redissolved again in methanol (70 mL) and toluene (100 mL), and concentrated to afford the product as a yellow solid (6.26 g, 75%). ¹H NMR (DMSO- d_6): δ 12.41 (br s, 1 H), 8.63 (s, 1 H), 8.05–7.97 (m, 2 H), 7.70 (m, 1 H), 7.42 (m, 1 H). MS m/z 313 (M - 1).

Methyl 3-Methoxy-4-iodo-2-naphthoate (17). A solution of **16** (8.0 g), dimethyl sulfate (8.03 g), powdered potassium carbonate (8.80 g), and dry acetone (150 mL) was heated under reflux for 18 h. The solution was cooled to room temperature, triethylamine (15 mL) was added, and stirring was continued for 30 min. The solution was filtered through a pad of Celite and washed with dry acetone (50 mL). The filtrate was concentrated to a yellow oil, diluted with ethyl acetate, and washed successively with 1 N HCl (100 mL), saturated aqueous sodium bicarbonate (100 mL), and brine (100 mL). The organic phase was dried (sodium sulfate), filtered, concentrated in hexanes) to afford the product as a yellow oil (5.53 g, 64%). ¹H NMR (DMSO- d_6): δ 8.47 (s, 1 H), 8.09 (m, 2 H), 7.74 (m, 1 H), 7.61 (m, 1 H), 3.94 (s, 3 H), 3.87 (s, 3 H).

1-Iodo-2-methoxy-3-cyanonaphthalene (18). On the basis of the procedure of Weinreb,²⁰ **17** (5.0 g) was suspended in xylenes (100 mL) and cooled to 0 °C, dimethylaluminum amide solution (approximately 37 mmol) was added, and the solution was heated under reflux for 2.5 h. The solution was then cooled to 0 °C, and the solution was acidified to pH 2 by addition of 1 N HCl and extracted with ethyl acetate (3 × 100 mL). The combined ethyl acetate extracts were washed with saturated aqueous sodium bicarbonate (150 mL) and brine (150 mL), dried (sodium sulfate), filtered, concentrated, and purified by chromatography (1:1 ethyl acetate:DCM and then 10–20% ethyl acetate in DCM) to afford the product as a white solid (3.29 g, 73%). ¹H NMR (DMSO-*d*₆): δ 8.69 (s, 1 H), 8.24–8.04 (m, 2 H), 7.91–7.81 (m, 1 H), 7.76–7.65 (m, 1 H), 3.99 (s, 3 H). MS *m*/*z* 311 (M⁺).

Methyl 2-Methoxy-3-cyano-1-naphthoate (19). Through a suspension of **18** (0.250 g), Pd(OAc)₂ (0.018 g), triethylamine (0.081 g), and methanol (20 mL) was bubbled carbon monoxide for 25 min and then stirred at 70 °C under carbon monoxide (1 atm) for 18 h. The cooled solution was filtered, rinsed with methanol (20 mL) and DCM (20 mL), concentrated, pread-sorbed onto silica (1 g), and purified by chromatography (0–10% ethyl acetate in hexanes) to afford the product as a white solid (0.113 g, 59%). ¹H NMR (DMSO-*d*₆): δ 8.78 (s, 1 H), 8.12–8.09 (m, 1 H), 7.84–7.78 (m, 2 H), 7.70–7.63 (m, 1 H), 4.02–4.01 (m, 6 H). IR (cm⁻¹): 2228, 1724, 1296, 1236, 1208, 1017.

2-Methoxy-3-cyano-1-naphthoic Acid (20). A solution of **19** (0.113 g), LiOH (0.0196 g), THF (3 mL), water (1 mL), and methanol (1 mL) was stirred overnight at room temperature. The solution was diluted with saturated sodium bicarbonate and extracted with diethyl ether. The aqueous layer was acidified to pH 2 by addition of 1 N HCl and extracted with diethyl ether. The organic layer was washed with water (30 mL) and brine (40 mL), dried (sodium sulfate), filtered, and

concentrated to a white solid (96 mg, 89%). ¹H NMR (DMSOd₆): δ 14.06 (broad, 1 H), 8.08–8.02 (m, 1 H), 7.83–7.76 (m, 2 H), 7.69–7.63 (m, 1 H), 4.02 (s, 3 H). MS *m*/*z* 226 (M – 1).

N-((*S*)-2-(3,4-Dichlorophenyl)-4-(4-((*S*)-2-methylsulfinylphenyl)-1-piperidinyl)butyl)-N-methyl-2-methoxy-3cyano-1-naphthamide Citrate (4). A solution of 20 (0.065 g), oxalyl chloride (0.039 g), and DMF (approximately 5 mL) was stirred for 1.5 h and then concentrated to afford 2-methoxy-3-cyano-1-naphthoyl chloride as a white residue, which was used directly. 2-Methoxy-3-cyano-1-naphthoyl chloride (0.065 g) was reacted with **22**¹⁶ (0.136 g), and the free base (0.170 g, 72%) was converted to the citrate salt. ¹H NMR (DMSO-*d*₆): δ 8.71–8.63 (m, 1 H), 8.08–8.00 (m, 1 H), 7.85– 7.33 (m, 8.68, 1 H), 7.11–6.85 (m, 0.6 H), 6.31–6.28 (m, 0.47 1 H), 4.57–0.96 (m, 22 H). MS *m*/*z* 662 (M⁺). Anal. calcd for C₃₆H₃₇N₃O₃SCl₂, 1.05 citric acid: C, 58.78; H, 5.29; N, 4.86. Found: C, 58.64; H, 5.28; N, 5.16.

8-Benzyl-1,3,8-triazaspiro[4.5]decane-2,4-dione (24). 1-Benzyl-4-piperidone (100 g) was added in a single portion to a mechanically stirred suspension of ammonium carbonate (488.5 g) and sodium cyanide (70.0 g) in water (700 mL) and ethanol (700 mL). The reaction mixture was stirred at 60 °C for 12 h. The inorganic salts dissolved gradually in the solution, and spirohydantoin crystals formed. After they cooled to room temperature, the solids were collected by filtration, washed with warm water (2 L), recrystallized from 80% ethanol (2 L), washed with ethanol, and dried in a vacuum oven at 50 °C to give the hydantoin (122 g, 89%) as a white solid. NMR (DMSO- d_6): δ 10.64 (bs, 1 H), 8.45 (broad s, 1 H), 7.29 (m, 5 H), 3.48 (s, 2 H), 2.69 (m, 2 H), 2.28 (m, 2 H), 1.81 (m, 2 H), 1.51 (m, 2 H). MS m/z 260 (M⁺).

4-Amino-1-benzyl-4-carboxypiperidine (25). A stirred solution of **24** (40.0 g) and lithium hydroxide monohydrate (32.4 g) in water (500 mL) was heated under reflux for 40 h. The mixture was cooled to room temperature and filtered to remove a white precipitate, and the filtrate was evaporated. The pH of the concentrate was adjusted from 12 to 5 with concentrated hydrochloric acid, and the solution was evaporated to dryness. The residue was suspended in methanol to provide a white precipitate that was filtered, washed with methanol, and air-dried to give the product (32.7 g, 66%) as a white solid. NMR (DMSO-*d*₆): δ 4.00 (m, 5 H), 3.89 (m, 2 H), 2.92 (m, 4 H), 2.12 (m, 2 H), 1.84 (m, 2 H). MS *m*/*z* 235 (M⁺).

4-Amino-1-benzyl-4-ethoxycarbonylpiperidine (26). Thionyl chloride (43.0 mL) was added dropwise to a suspension of **25** (23.0 g) in ethanol (400 mL) at 0 °C to give a clear solution. The reaction mixture was warmed to room temperature, heated under reflux for 5 h, and stirred overnight at room temperature. The mixture was concentrated, redissolved in toluene, and concentrated again. The resulting oil was dissolved in water, adjusted to pH 3 with 1 N sodium hydroxide, neutralized with saturated aqueous sodium bicarbonate, and extracted with DCM. The organic extracts were dried and evaporated to give the product (21.5 g, 84%) as an oil. NMR (CDCl₃): δ 7.28 (m, 5 H), 4.17 (q, 2 H, *J* = 7.1), 3.52 (s, 2 H), 2.50 (m, 4 H), 2.13 (m, 2 H), 1.54 (m, 4 H), 1.27 (t, 3 H, *J* = 7.1). MS *m/z* 263 (M⁺).

1-Benzyl-4-(5-chlorovaleramido)-4-ethoxycarbonylpiperidine (27). 5-Chlorovaleryl chloride (13.2 g) in DCM (50 mL) was added dropwise to a solution of **26** (20.3 g) and pyridine (13.1 mL) in DCM (250 mL) at 0 °C, resulting in the formation of a thick slurry within 20 min. After it was warmed to room temperature and stirred overnight, the slurry was diluted with aqueous sodium bicarbonate to give a clear, biphasic solution, which was extracted with DCM. The organic extracts were dried (MgSO₄) and evaporated to a light brown semisolid. Ether was added, and the mixture was filtered to give the product (16.8 g, 57%) as a white solid. ¹H NMR (CD₃-OD): δ 7.28 (m, 5 H), 4.11 (q, 2H, J= 7.1), 3.55 (m, 4 H), 2.68 (m, 2 H), 2.26 (m, 4 H), 2.05 (m, 4 H), 1.75 (m, 4 H), 1.21 (t, 3H, J= 7.1). MS m/z 381 (M⁺).

1-Benzyl-4-ethoxycarbonyl-4-(2-oxopiperidino)piperidine (28). A solution **27** (16.8 g) in THF (50 mL) was transferred by cannula into a suspension of sodium hydride (2.1 g) in THF (150 mL). After it was stirred overnight, the reaction mixture was quenched with water, concentrated (to remove THF), diluted with water, and extracted with DCM. The combined organic extracts were dried and evaporated. The crude product was purified by flash chromatography using DCM:methanol (gradient 97:3, 95:5) to give the product (13.2 g, 87%) as a solid. NMR (CD₃OD): δ 7.30 (m, 5 H), 4.11 (q, 2 H, *J* = 7.1), 3.54 (s, 2 H), 3.44 (m, 2 H), 2.66 (m, 2 H), 2.52 (m, 2 H), 2.32 (m, 2 H), 2.20 (m, 2 H), 2.01 (m, 2 H), 1.85 (m, 2 H), 1.74 (m, 2 H), 1.20 (t, 3 H, *J* = 7.1). MS *m*/*z* 345 (M⁺).

4-Ethoxycarbonyl-4-(2-oxopiperidino)piperidine (29). A solution of **27** (12.4 g) and 20% palladium hydroxide on carbon (2.0 g) in ethanol (150 mL) was stirred overnight under hydrogen (1 atm). The reaction mixture was filtered through diatomaceous earth, and the filtrate was evaporated to give the product (9.1 g, 99%) as a viscous oil. NMR (CD₃OD): δ 4.13 (q, 2 H, *J* = 7.1), 3.44 (m, 2 H), 2.95 (m, 4 H), 2.32 (m, 2 H), 2.19 (m, 2 H), 1.88 (m, 4 H), 1.74 (m, 2 H), 1.23 (t, 3 H, *J* = 7.1). MS *m/z* 255 (M⁺).

1-Benzyloxycarbonyl-4-(ethoxycarbonyl)-4-(2-oxopiperidino)piperidine (30). A solution of **29** (9.0 g) in DCM (25 mL) was added to a solution of N-(benzyloxy-carbonyloxy)succinimide (8.8 g) and triethylamine (5.4 mL) in DCM (150 mL). After 1.5 h, the reaction mixture was washed successively with 1.0 N hydrochloric acid and saturated aqueous sodium bicarbonate. The separated organic layer was dried and evaporated to give the title compound (11.6 g, 86%) as a light yellow solid. NMR (CDCl₃): δ 7.37 (m, 5 H), 5.16 (s, 2 H), 4.28 (q, 2 H, J = 7.1), 4.09 (m, 2 H), 3.40 (m, 2 H), 3.28 (m, 2 H), 2.53 (m, 2 H), 2.34 (m, 2 H), 1.83 (m, 6 H), 1.30 (t, 3 H, J =7.1). MS m/z 389 (M⁺).

1-Benzyloxycarbonyl-4-carboxy-4-(2-oxopiperidino)piperidine (31). A solution of **30** (11.4 g) in THF (150 mL) and 1.0 N sodium hydroxide (50 mL) was heated under reflux for 10 h. The reaction mixture was evaporated, and the resulting aqueous solution was diluted with water and extracted with DCM to recover unreacted starting material (3.7 g). The aqueous phase was acidified to pH 3 with 1.0 N hydrochloric acid and extracted with DCM. The combined organic extracts were washed with water, dried, and evaporated to afford a light yellow solid. The material was suspended in ether and filtered to give the title compound (6.3 g, 88% based on reacted starting material) as a white solid. NMR (CDC1₃): δ 7.37 (m, 5 H), 5.17 (s, 2 H), 4.11 (m, 2 H), 3.45–3.32 (m, 4 H), 2.55 (m, 2 H), 2.37 (m, 2 H), 1.94–1.78 (m, 6 H). MS *m*/*z* 361 (H⁺).

1-Benzyloxycarbonyl-4-methylaminocarbonyl-4-(2oxopiperidino)piperidine (32). To a solution of **31** (45.0 g) in DCM was added methylamine hydrochloride (9.7 g), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (27.8 g), and then 4-(dimethylamino)pyridine (17.7 g). After it was stirred overnight, the mixture was washed with 1 N HCl (2×250 mL), 1 N NaOH (250 mL), and brine (250 mL), dried (MgSO₄), filtered, and concentrated. This material was purified by flash chromatography (gradient elution using 1–5% methanol in DCM) to afford the product as a dry, light pink foam (36.5 g, 80%). NMR: δ 7.35 (m, 5 H), 6.72 (m, 1 H), 5.12 (s, 2 H), 3.56 (m, 4 H), 3.30 (m, 2 H), 2.78 (d, 3H, J = 4.8), 2.43 (m, 2 H), 2.27 (m, 2 H), 2.20 (m, 2 H), 1.76 (m, 4 H).

4-Methylaminocarbonyl-4-(2-oxopiperidino)piperidine (23). A solution of **32** (6.1 g) and 20% palladium hydroxide on carbon (0.60 g) in ethanol (70 mL) was stirred overnight, filtered through Celite, and then concentrated under reduced pressure to afford the product as a viscous gum (3.9 g, 99%), which was used without purification.

N-[2-(S)-(3,4-Dichlorophenyl)-4-hydroxybutyl]-N-methyl-3-cyano-2-methoxy-1-naphthamide (34). A solution of **33**²¹ (5.51 g, 22.20 mmol) in DCM (175 mL) was combined with 10% aqueous sodium bicarbonate solution (100 mL). The mixture was cooled to 0 °C, and a solution of **21** (5.4 g, 22.20 mmol) in DCM (25 mL) was added dropwise over 30 min. After it was stirred overnight at room temperature, water was added to the reaction mixture and the organic phase was separated, dried (MgSO₄), and purified by chromatography (3% isopropyl alcohol in DCM) to afford the product as a white solid (9.3 g, 91%). ¹H NMR (DMSO-d₆): δ 8.67–8.58 (m), 8.07–8.02 (m), 7.72-7.65 (m), 7.64-7.43 (m), 7.37-7.34 (m), 7.02-7.01 (m), 6.98-6.87 (m), 6.77-6.74 (m), 6.31-6.28 (d, J=9), 4.55-4.52(m), 4.35-4.34 (m), 4.03-3.92 (m), 4.03-3.92 (m), 3.78-3.72 (m), 3.68 (s, 3H), 3.45-3.37 (m), 3.29-2.89 (m), 2.73 (s 3H), 2.59–2.49 (m), 1.91–1.78 (m), 1.58–1.46 (m). MS m/z = 457 (M^+)

N-[2-(S)-(3,4-Dichlorophenyl)-4-oxobutyl]-N-methyl-3cyano-2-methoxy-1-naphthamide (35). Compound 34 (5.69 g, 12.45 mmol) was oxidized using oxalyl chloride (2.17 mL) and DMSO (3.53 mL) and Et₃N (7.0 mL) in DCM (200 mL) using typical Swern conditions²² to afford the aldehyde (5.0 g, 88%) after column chromatography (5% methanol and DCM). ¹H NMR (DMSO- d_6): δ 9.70–9.64 (ap m), 8.67–8.57 (ap m), 8.07-7.97 (m), 7.80 (s 1H), 7.72-7.55 (m), 7.52-7.48 (m), 7.40-7.33 (m), 7.12-7.02 (m), 6.87-6.83 (m), 6.37-6.34 (d, J = 9), 4.53-4.44 (m), 4.11-4.00 (m), 3.94-3.92 (m), 3.91-3.73(m), 3.71 (s, 3H), 3.45-3.38 (m), 3.14 (s), 2.97-2.95 (d, J=6), 2.63 (s, 3H), 2.60-2.49 (m). MS m/z 455 (M⁺).

N-((S)-2-(3,4-Dichlorophenyl)-4-(4-(2-oxo-1-piperidinyl)-4-(N-methylaminocarbonyl))-1-piperidinyl)butyl)-N-methyl-3-cyano-2-methoxy-1-naphthamide (5). Compound 23 (0.52 g, 2.19 mmol) and compound 35 (1.0 g, 2.19 mmol) were dissolved in methanol (10 mL) and stirred for 15 min, and then, acetic acid (0.5 mL) was added. The reaction mixture was allowed to stir for 1 h. Next, NaBH₃CN (0.21 g) was added and the reaction was allowed to stir overnight. The reaction was quenched with aqueous NaHCO3 and extracted with DCM, washed with brine, dried (MgSO₄), and purified by chromatography (5% methanol in DCM) to give the title compound (740 mg, 50%) as a solid, which was converted to the citrate salt by combining with 1 equiv of citric acid in methanol and then concentrated and dried under reduced pressure. ¹H NMR (DMSO-d₆): δ 8.70-8.63 (m), 8.08-7.91 (m), 7.77–7.72 (m), 7.68 (s), 7.66–7.61 (m), 7.58–7.54 (m), 7.49-7.47 (m), 7.39-7.33 (m), 7.06-7.03 (m), 6.88-6.79 (m), 6.32-6.29 (d J=9), 4.55-4.47 (m), 4.12-3.99 (m), 3.92-3.88(m), 3.82-3.77 (m), 3.69 (s, 3H), 3.46-3.30 (m), 3.17-3.06 (m), 2.99-2.72 (m), 2.65-2.56 (m), 2.22-2.10 (m), 1.79-1.77 (m), 1.67–1.63 (m). MS m/z 678 (M⁺). Anal. calcd for C₃₆H₄₁N₅O₄-Cl₂, 1 citric acid, 1.34 water: C, 56.36; H, 5.82; N, 7.82. Found: C, 56.34; H, 5.73; N, 7.80. Data from ¹H NMR spectroscopy and HPLC indicated that the product existed as a mixture of atropisomers.

Supporting Information Available: Experimental details for the synthesis of 36a-k, 37a-g, 38b-f, 39a-e, and 40a-e. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Ribeiro-Da-Silva, A.; McLeod, A. L.; Krause, J. E. Neurokinin receptors in the CNS. Handb. Chem. Neuroanat. 2000, 16, 195-240.
- (2) Stout, S. C.; Owens, M. J.; Nemeroff, C. B. Neurokinin-1 receptor antagonists as potential antidepressants. Annu. Rev. Pharmacol.
- antagonists as potential under the second process of the
- Swain, C.; Rupniak, N. M. J. Progress in the development of (4)neurokinin antagonists. Annu. Rep. Med. Chem. 1999, 34, 51-60.
- (5)Gerspacher, M.; Von Sprecher, A. Dual neurokinin NK₁/NK₂ receptor antagonists. Drugs Future 1999, 24, 883-892.
- (6)Gao, Z.; Peet, N. P. Recent advances in neurokinin receptor antagonists. Curr. Med. Chem. 1999, 6, 375-388.
- (7)Sakurada, T.; Sakurada, C.; Tan-No, K.; Kisara, K. Neurokinin receptor antagonists: therapeutic potential in the treatment of pain syndromes. *CNS Drugs* **1997**, *8*, 436–447. Shenvi, A. B.; Aharony, D.; Brown, F. J.; Buckner, C. K.;
- (8)Campbell, J. B.; Dedinas, R. F.; Gero, T. W.; Green, R. C.; Jacobs, ; Kusner, E. J.; Miller, S. C.; Ohnmacht, C.; Palmer, W.; Smith, R.; Steelman, G.; Ulatowski, T.; Veale, C.; Walsh, S. Abstracts of Papers, Part 1, 214th National Meeting of the American Chemical Society: Las Vegas, NV, Sept 7–1, 1997; American Chemical Society: Washington, DC, 1997; MEDI 264.
- (9)Advenier, C.; Joos, G.; Molimard, M.; Lagente, V.; Pauwels, R. Role of tachykinins as contractile agonists of human airways in asthma. Clin. Exp. Allergy 1999, 29, 579-584.

- (10) Barnes, P. J.; Baraniuk, J. N.; Belvisi, M. G. Neuropeptides in the respiratory tract. Part I. Am. Rev. Respir. Dis. 1991, 144, 1187 - 1198.
- (11) Burkholder, T. P.; Kudlacz, E. M.; Maynard, G. D.; Liu, X.-G.; Le, T.-B.; Webster, M. E.; Horgan, S. W.; Wenstrup, D. L.; Freund, D. W.; Boyer, F.; Bratton, L.; Gross, R. S.; Knippenberg, R. W.; Logan, D. E.; Jones, B. K.; Chen, T.-M.; Geary, J. L.; Correll, M. A.; Poole, J. C.; Mandagere, A. K.; Thompson, T. N.; Hwang, K.-K. Synthesis and structure-activity relationships for a series of substituted pyrrolidine NK1/NK2 receptor antagonists. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2531–2536. (12) Ting, P. C.; Lee, J. F.; Anthes, J. C.; Shih, N. Y.; Piwinski, J. J.
- Synthesis of substituted 4(Z)-(methoxyimino)pentyl-1-pipe-ridines as dual NK₁/NK₂ inhibitors. *Bioorg. Med. Chem. Lett.* 2001, 11, 491-494.
- Shah, S. K.; Hale, J. J.; MacCoss, M.; Dorn, C. P., Jr.; Qi, H.; (13)Miller, D. J.; Finke, P. E.; Meurer, L. C.; Cascieri, M. A.; Sadowski, S.; Metzger, J. M.; Eiermann, G. J.; Forrest, M. J.; MacIntyre, D. E.; Mills, S. G. Discovery of spiroindolinopiperidine derivatives as potent, orally active dual antagonists of NK1 and NK₂ receptors. Abstr. Pap.-Am. Chem. Soc. 2000, 220, MEDI-195.
- (14) Greenfeder, S.; Cheewatrakoolpong, B.; Billah, M.; Egan, R. W.; Keene, E.; Murgolo, N. J.; Anthes, J. C. The neurokinin-1 and neurokinin-2 receptor binding sites of MDL103,392 differ. *Bioorg. Med. Chem.* **1999**, *7*, 2867–2876. (15) Reichard, G. A.; Ball, Z. T.; Aslanian, R.; Anthes, J. C.; Shih, N.
- Y.; Piwinski, J. J. The design and synthesis of novel NK₁/NK₂ dual antagonists. Bioorg. Med. Chem. Lett. 2000, 10, 2329-2332.
- (16) Bernstein, P. R.; Aharony, D.; Albert, J. S.; Andisik, D.; Barthlow, H. G.; Bialecki, R.; Davenport, T.; Dedinas, R. F.; Dembo-fsky, B. T.; Koether, G.; Kosmider, B. J.; Kirkland, K.; Ohnmacht, C. J.; Potts, W.; Rumsey, W. L.; Shen, L.; Shenvi, A.; Sherwood, S.; Stollman, D.; Russell, K. Discovery of novel, orally active dual NK1/NK2 antagonists. Bioorg. Med. Chem. Lett. 2001, 11, 2769-2773.
- (17) Rumsey, W. L.; Aharony, D.; Bialecki, R. A.; Abbott, B. M.; Barthlow, H. G.; Caccese, R.; Ghanekar, S.; Lengel, D.; McCarthy, M.; Wenrich, B.; Undem, B.; Ohnmacht, C.; Shenvi, A.; Albert, J. S.; Brown, F.; Bernstein, P. R.; Russell, K. Pharmacological characterization of ZD6021: a novel, orally active antagonist of the tachykinin receptors. J. Pharmacol. Exp. Ther. 2001, 298, 307-315.
- (18)Sebok, P.; Timar, T.; Eszenyi, T.; Patonay, T. The first synthesis of 7-alkylthio-2,2-dimethyl-2H-chromenes, the sulfur analogues of natural and synthetic precocenes. Synthesis 1994, 8, 837-840
- (19) Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. An efficient asymmetric oxidation of sulfides to sulfoxides. J. Am. Chem. Soc. 1984, 106, 8188-8193.
- Wood, J. L.; Khatri, N. A.; Weinreb, S. M. A direct conversion of (20)esters to nitriles. Tetrahedron Lett. 1979, 51, 4907-4910.
- (21)Miller, S. Preparation of Bicyclic Heterocycles as Neurokinin A Antagonists. 1995, WO 9515961 A9515961 19950615.
- Mancuso, A.; Huang, S.; Swern, D. Oxidation of Long-Chain and Related Alcohols to Carbonyls by Dimethyl Sulfoxide "Activated" (22)
- by Oxalyl Chloride. J. Org. Chem. **1978**, 43, 2480–2482. Buckner, C. K.; Liberati, N.; Dea, D.; Lengel, D.; Stinson-Fisher, C.; Campbell, J.; Miller, S.; Shenvi, A.; Krell, R. D. Differential (23)blockade by tachykinin NK1 and NK2 receptor antagonists of bronchoconstriction induced by direct-acting agonists and the indirect-acting mimetics capsaicin, serotonin and 2-methylserotonin in the anesthetized guinea pig. J. Pharmacol. Exp. Ther. 1993, 267, 1168-1175.
- (24) Saria, A.; Lundberg, J. M.; Skofitsch, G.; Lembeck, F. Vascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn-Schmiedeberg's Arch. Pharmacol. 1983, 324, 212-218.
- (25) Clayden, J.; Pink, J. H. Concerted rotation in a tertiary aromatic amide: towards a simple molecular gear. Angew. Chem., Int. Ed. 1998, 37, 1937-1939.
- (26)Ahmed, A.; Bragg, R. A.; Clayden, J.; Lai, L. W.; McCarthy, C.; Pink, J. H.; Westlund, N.; Yasin, S. A. Barriers to rotation about the chiral axis of tertiary aromatic amides. Tetrahedron 1998, 54, 13277-13294.
- Manuscript in preparation.
- (28) For compounds that displayed nonpurely competitive antagonism, affinity could be approximately evaluated by monitoring the magnitude of the maximum tissue relaxation response (% of control response) to increasing agonist concentration following incubation of the tissue with the antagonist at a given concentration. Thus, higher antagonist affinity would be indicated by greater suppression (lower percentage of control response) at lower concentration. For compounds showing this type of behavior, observations were as follows: 38b, 37% at 30 nM; 38c, 42% at 10 nM; 38d, 17% at 10 nM; and 38f, 42% at 100 nM.

- (29) Emonds-Alt, X.; Bichon, D.; Ducoux, J. P.; Heaulme, M.; Miloux, (29) Emonds-Alt, X.; Bichon, D.; Ducoux, J. P.; Heaulme, M.; Miloux, B.; Poncelet, M.; Proietto, V.; Van Broeck, D.; Vilain, P.; et al. SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. *Life Sci.* 1994, *56*, L27–L32.
 (30) Aharony, D.; Little, J.; Thomas, C.; Powell, S.; Berry, D.; Graham, A. Isolation and pharmacological characterization of a hamster urinary bladder neurokinin A receptor cDNA. *Mol. Pharmacol.* 1994, *45*, 9–19.
 (31) Graham, A. Honking, B.; Beuvell, S. L.; Donke, D.; Briere, J.
- (31) Graham, A.; Hopkins, B.; Powell, S. J.; Danks, P.; Briggs, I. Isolation and characterization of the human lung NK-2 receptor gene using rapid amplification of cDNA ends. Biochem. Biophys. Res. Commun. 1991, 177, 8-16.
- (32) Huang, R.; Cheung, A.; Mazina, K.; Strader, C.; Fong, T. cDNA Sequence and Heterologous Expression of the Human Neuro kinin-3 Receptor. Biochem. Biophys. Res. Commun. 1992, 184, 966-972.
- (33) Takeda, Y.; Chou, K. B.; Takeda, J.; Sachais, B. S.; Krause, J. E. Molecular cloning, structural characterization and functional
- C. D. Differential activation of intracellular effector by two

isoforms of human neurokinin-1 receptor. Mol. Pharmacol. 1992, 41, 24-30.

- 41, 24-50.
 (35) Gerard, N. P.; Garraway, L. A.; Eddy, R. L., Jr.; Shows, T. B.; Iijima, H.; Paquet, J. L.; Gerard, C. Human substance P receptor (NK-1): organization of the gene, chromosome localization and functional expression of cDNA clones. *Biochemistry* 1991, *30*, 100101 10640-10646.
- Takahashi, K.; Tanaka, A.; Hara, M.; Nakanishi, S. The primary structure and gene organization of human substance P and (36) neuromedin K receptors. Eur. J. Biochem. 1992, 204, 1025-1033
- Buell, G.; Schulz, M. F.; Arkinstall, S. J.; Maury, K.; Missotten, M.; Adami, N.; Talabot, F.; Kawashima, E. Molecular charac-terization, expression and localization of human neurokinin-3 receptor. *FEBS Lett.* **1992**, *299*, 90–95. (37)
- Aharony, D.; Buckner, C. K.; Ellis, J. L.; Ghanekar, S. V.; Graham, A.; Kays, J. S.; Little, J.; Meeker, S.; Miller, S. C.; et (38) al. Pharmacological characterization of a new class of nonpeptide neurokinin A antagonists that demonstrate species selectivity. J. Pharmacol. Exp. Ther. 1995, 274, 1216-1221.

JM020094I